- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Beloborodov, Andrei M (2)
-
Skoutnev, Valentin A (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Rotational evolution of stellar radiative zones is an old puzzle. We argue that angular momentum transport by turbulent processes induced by differential rotation is insufficient, and propose that a key role is played by “magnetic webs.” We define magnetic webs as stable magnetic configurations that enforce corotation of their coupled mass shells, and discuss their resistance to differential torques that occur in stars. Magnetic webs are naturally expected in parts of radiative zones that were formerly convective, retaining memory of extinguished dynamos. For instance, red giants with moderate massesM ≳ 1.3M⊙likely contain a magnetic web deposited on the main sequence during the retreat of the central convective zone. The web couples the helium core to the hydrogen envelope of the evolving red giant and thus reduces spin-up of the contracting core. The magnetic field and the resulting slower rotation of the core are both consistent with asteroseismic observations, as we illustrate with a stellar evolution model with mass 1.6M⊙. Evolved massive stars host more complicated patterns of convective zones that may leave behind many webs, transporting angular momentum toward the surface. Efficient web formation likely results in most massive stars dying with magnetized and slowly rotating cores.more » « lessFree, publicly-accessible full text available August 5, 2026
-
Skoutnev, Valentin A; Beloborodov, Andrei M (, The Astrophysical Journal)Abstract The Tayler instability (TI) of toroidal magnetic fields is a candidate mechanism for driving turbulence, angular momentum (AM) transport, and dynamo action in stellar radiative zones. Recently V. A. Skoutnev & A. M. Beloborodov (2024) revisited the linear stability analysis of a toroidal magnetic field in a rotating and stably stratified fluid. In this paper, we extend the analysis to include both thermal and compositional stratification, allowing for general application to stars. We formulate an analytical instability criterion for use as a “toggle switch” in stellar evolution codes. It determines when and where in a star the TI develops with a canonical growth rate as assumed in existing prescriptions for AM transport based on Tayler–Spruit dynamo. We implement such a toggle switch in the MESA stellar evolution code and map out the stability of each mode of the TI on a grid of stellar evolution models. In evolved lower-mass stars, the TI becomes suppressed in the compositionally stratified layer around the hydrogen-burning shell. In higher-mass stars, the TI can be active throughout their radiative zones but at different wavenumbers than previously expected.more » « lessFree, publicly-accessible full text available July 24, 2026
An official website of the United States government
